Simplicity of Rings of Differential Operators in Prime Characteristic
نویسنده
چکیده
LetW be a finite dimensional representation of a linearly reductive group G over a field k. Motivated by their work on classical rings of invariants, Levasseur and Stafford asked whether the ring of invariants under G of the symmetric algebra of W has a simple ring of differential operators. In this paper, we show that this is true in prime characteristic. Indeed, if R is a graded subring of a polynomial ring over a perfect field of characteristic p > 0 and if the inclusion R →֒ S splits, then Dk(R) is a simple ring. In the last section of the paper, we discuss how one might try to deduce the characteristic zero case from this result. As yet, however, this is a subtle problem and the answer to the question of Levasseur and Stafford remains open in characteristic zero.
منابع مشابه
Tight Closure and Differential Simplicity
The behavior of the Hasse–Schmidt algebra under étale extension is used to show that the Hasse–Schmidt algebra of a smooth algebra of finite type over a field equals the ring of differential operators. These techniques show that the formation of Hasse–Schmidt derivations does not commute with localization, providing a counterexample to a question of Brown and Kuan; their conjecture is reformula...
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملCompleteness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملGroup rings satisfying generalized Engel conditions
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
متن کاملTwo New Types of Rings Constructed from Quasiprime Ideals
Keigher showed that quasi-prime ideals in differential commutative rings are analogues of prime ideals in commutative rings. In that direction, he introduced and studied new types of differential rings using quasi-prime ideals of a differential ring. In the same sprit, we define and study two new types of differential rings which lead to the mirrors of the corresponding results on von Neumann r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007